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Goals

✦ develop new major JPF version to address scalability limiters identified 
in VVFCS milestone 06/30/2010

✦ two limiters identified in VVFCS milestone 06/30/2010:
• (1) major: allocation time exponentially growing with heap size
• (2) superfluous transitions/states caused by standard thread 

synchronization APIs
✦ primary goals are optimization efforts
✦ additional goals:

• improve overall performance (garbage collection, state storage/
matching, partial order reduction)

• improve extensibility (can run contrary to optimization)
• reduce complexity hotspots (e.g. partial order reduction reachability 

analysis)
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Deliverable

✦ JPF version 6 released 11/30/2010 on http://babelfish.arc.nasa.gov/hg/
jpf/jpf-core

✦ major development effort (hg history --stat -d”>07/01/10”):

• total change statistics since VVFCS milestone 06/30:
‣ 1439 files
‣ 40197 added lines
‣ 22906 removed lines

• change statistics related to main goal (allocation time optimization):
‣  780 files
‣ 19319 added lines
‣ 12687 removed lines
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✦ major success: exponential allocation time problem eliminated
✦ v6 has linear allocation time

Results - Allocation Time (1)
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Results - Allocation Time (2)

✦ version 6 scales linearly up to >10e5 objects per thread
✦ absolute allocation time reduced to same order of magnitude as host 

VM heap management spikes (due to garbage collection / heap growth)
✦ ⇒ allocation bottleneck eliminated
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Results - Allocation Time (3)

✦ relative allocation time in version 6 independent of number of 
allocating threads

✦ order of magnitude better
for >10,000 objects

✦ nearly constant
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Challenges: Heap Replacement Insufficient

✦ allocation time was dependent on old heap implementation (required 
array of address space size)

✦ heap implementation was hardwired into state storage/restore and state 
matching components (both crucial for model checker)

✦ execution engine (partial order reduction) was piggybacking on 
DynamicArea garbage collector
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Solution: Redesign

✦ isolate heap implementation by means of abstract Heap interface
✦ design interface so that it does not require storage allocation for whole 

address range, and does not assume consecutive reference values
✦ implement per-thread clustered heap with efficient live object 

enumeration and free lists
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Solution: SparseClusterArrayHeap

✦ const time get & set operations (but thread and per-thread object limit)
✦ memory efficient for sparse address space (garbage collection holes)
✦ efficient enumeration of entries
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More Heap Redesign Benefits

✦ state storage, state matching, partial order reduction (POR) redesign ⇒ 
better extensibility + significant performance improvements for larger 
systems under test (less garbage collection cycles, less states)

✦ new design enables efficient implementation of property specific state 
matching (e.g. under-approximation for finding concurrency defects)

✦ non-trivial Java Swing example (jpf-awt/src/examples/RobotManager-
threaded.jpf - complex NullPointerViolation in multithreaded graphical 
user interface program):
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version time states search depth
v5 15sec 8829 587
v6generic 10sec 6176 508
v6concurrency 1sec 360 89
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State Optimization (1)

✦ second identified limiter (superfluous re-execution) was caused by 
standard Thread.join():
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class Thread {
  ..
  public synchronized void join(..){
    while (isAlive()){
      wait();
    }
  }
}

scheduling point  ①  : lock acquisition

scheduling point ② : signal wait

requires

..
t2.join();
..

public void run(){
  lenghyComputation();
}

scheduling point ③ : thread termination
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Results - State Optimization (2)

✦ lock acquisition only required for generic (application) signal waits 
✦ specific signal waits (Thread.join) can be implemented inside virtual 

machine - no need for loop that requires lock protection
✦ depending on joined thread, savings can be significant:
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====================================================== system under test
application: gov/nasa/jpf/bench/AllocBench.java
arguments:   2 10000 
..
starting 2 threads with 10000 objects each
====================================================== statistics
elapsed time:       0:00:05
states:             new=9, visited=2, backtracked=10, end=2
heap:               gc=94, new=40331, free=40061
instructions:       603507

====================================================== system under test
application: gov/nasa/jpf/bench/AllocBench.java
arguments:   2 10000 
..
starting 2 threads with 10000 objects each
====================================================== statistics
elapsed time:       0:00:00
states:             new=5, visited=0, backtracked=4, end=1
heap:               new=20366, released=20036, max live=10348, gc-cycles=5
instructions:       303379

version 5

version 6

allocates twice as many 
objects as required due to 
superfluous lock in 
Thread.join()

?
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